WEBINAR

Identification des Hélicobacters non-pylori sur spectromètre de masse MALDI-TOF Bruker.

Dr WANDJI Sahel

Pr Philippe LEHOURS

Le genre Helicobacter

Hélicobacters entérohépatiques

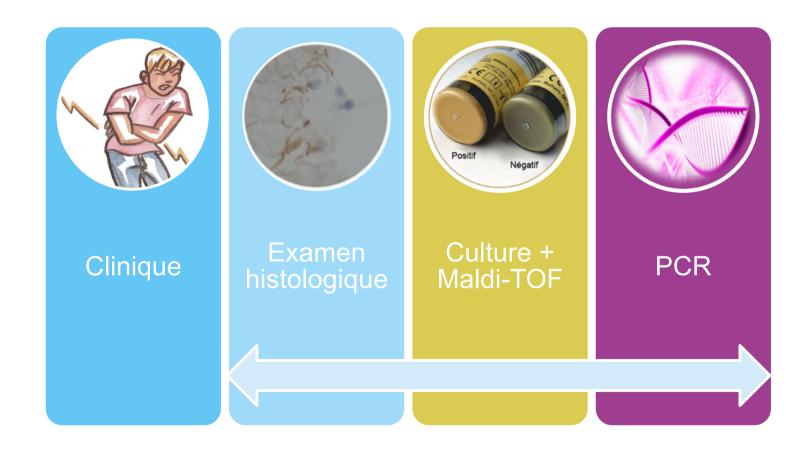
Hélicobacters gastriques

- → **2/3** des espèces : H. cinaedi, H. pullorum, H. fenneliae, H. bilis, H. hepaticus, H. canis...
- → Site de colonisation : intestin grêle, colon, rectum, foie

- → 1/3 des espèces : H. pylori,
 H. cinaedi, H. suis, H. heilmannii s.s...
- → Site de colonisation : Muqueuse gastrique principalement
- → Uréase +

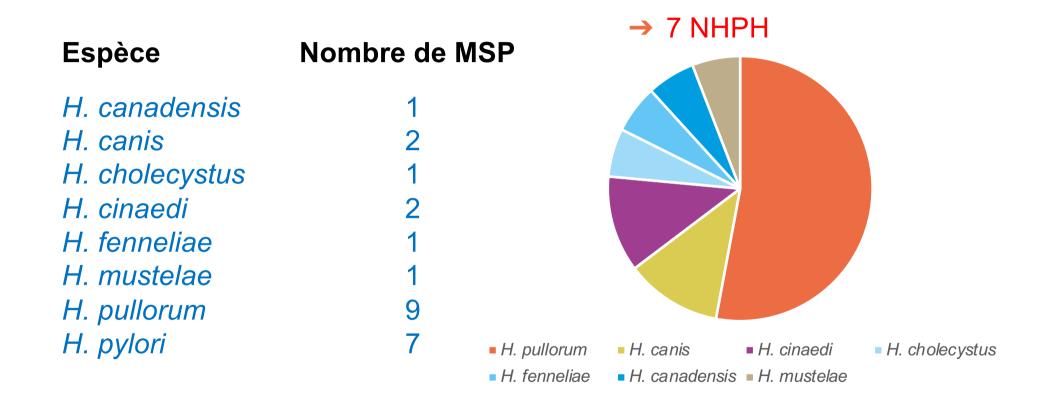
Pathogénicité

Hélicobacters entérohépatiques


Hélicobacters-non pylori gastriques

- → Bactériémies
- → Troubles digestifs aspécifiques
- Pathologies malignes hépatobiliaires
- → Maladies chroniques inflammatoires de l'intestin

- → Gastrites chroniques actives
- → Lymphome de MALT
- Troubles digestifs aspécifiques



Diagnostic

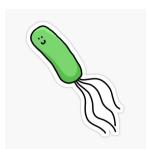
Base Bruker actuelle-genre Helicobacter (n=8)

Base du CNRCH déc 2022-genre Helicobacter (n=16)

Espèce	Nombre de M	SP		
H. bizzozeronnii	1	\rightarrow	15 NHPH	
H. burdigaliensis	1			
H. caesorodunens	sis 2			
H. canis	2			
H. canadensis	2			
H. cholecystus	1			
H. cinaedi	2			
H. fenneliae	1			
H. ganmani	1			
H. hepaticus	1			
H. labetouli	1			
H. muridarum	1	H. bizzozeronnii	- H. burdigaliancia	H. caesorodunensis
H. mustelae	1	H. bizzozeroniniiH. canis	H. burdigaliensisH. canadensis	H. cholecystus
H. pametensis	1	■ H. cinaedi	■ H. fenneliae	■ H. ganmani
H. pullorum	9	■ H. hepaticus	■ H. muridarum	■ H. mustelae
H. pylori	174	■ H. pametensis	H. pullorum	T M

Objectifs

- 1. Caractérisation des souches NHPH du CNRCH
- 2. Améliorer les connaissances et les capacités d'identification des NHPH
- 3. Enrichir la base MALDI du CNRCH-genre Helicobacter

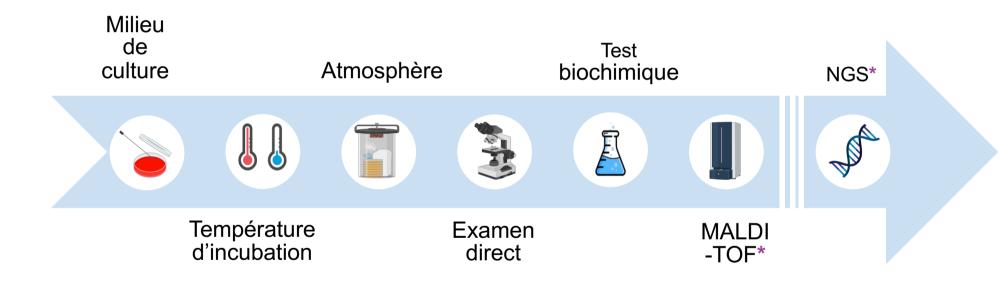


Matériels et méthodes

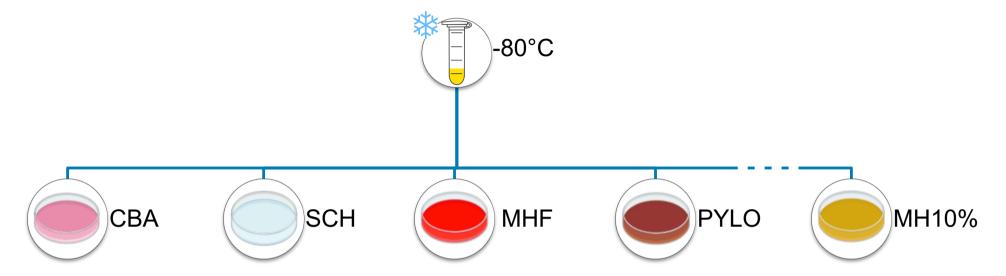
Les souches étudiées dans ce travail (n=17)

- → H. anseris CCUG 52421
- → H. bilis CCUG 38995
- → H. bizzozeronii CIP 105233
- → H. brantae CCUG 52420
- → H. canadensis NCTC 13242
- → H. canadensis CCUG 47163

- → H. nemestrinae CIP 104754
- → H. pametensis CIP 104249
- → Flexispira rappini CCUG 23435
- → Flexispira rappini CCUG 29176
- → H. valdiviensis CECT 8410

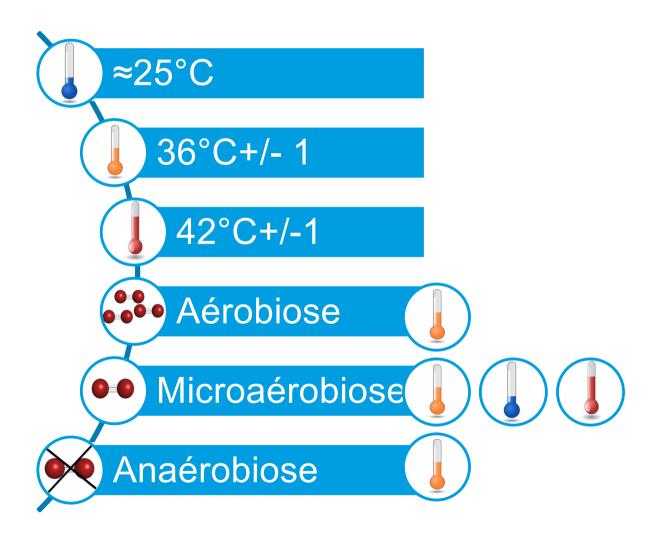

- → *H. canis* CIP 104753
- → H. cholecystus CIP 105596
- → H. cinaedi CIP103752
- → H. fenneliae DSM 7491
- → H. hepaticus ATCC 51449
- → H. muridarum CCUG 29262

- + 3 souches cliniques
- H. FR/H. AL/H. CH


Caractérisation des souches NHPH du CNRCH

Evaluation du milieu de culture préférentiel

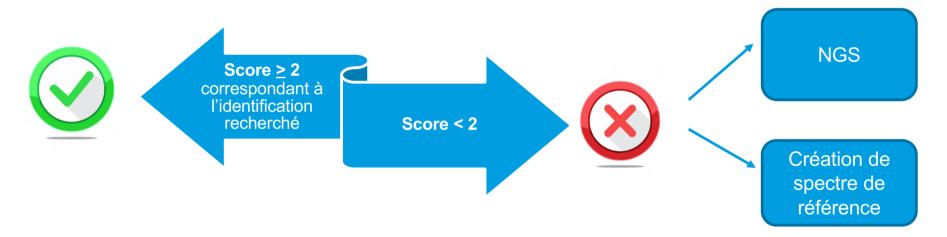
- → Critères :
- macroscopiques
- microscopiques


- → Formes coccoïdes ?
- → Mobilité ?

Températures et atmosphères d'incubation

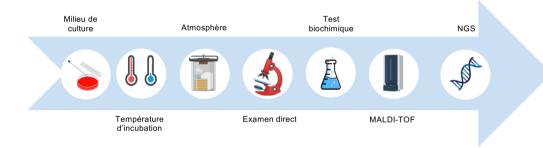
Tests biochimiques

- → Oxydase
- → Catalase
- → Uréase
- → Galerie API CAMPY (biomérieux)

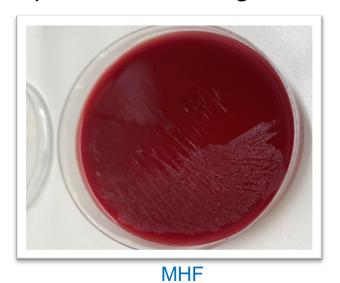


MALDI-TOF*

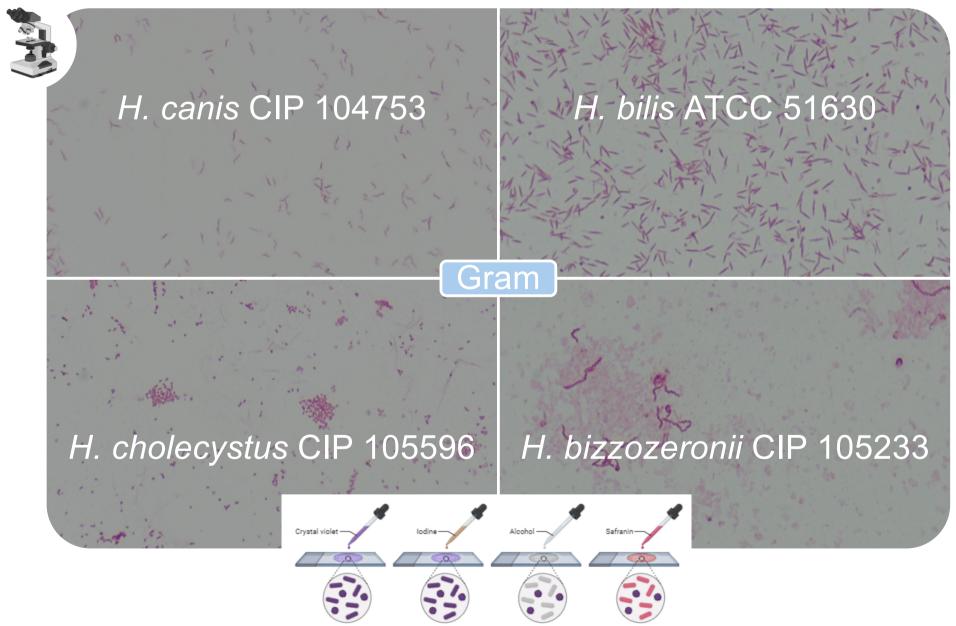
→ 2 spots/souche



- → Constitution d'une une base de données enrichie :
 - > + validation


Résultats

Milieux de culture


- → MHF et Pylo > SCH et CBA
- Tous les espèces testées ont été capables de pousser sur des géloses
 « Pylo »
- → MH10% très utiles pour *H. hepaticus*
- → Aspect « en nappe » brillante sur gélose « Pylo »
- → Exemple de *H. pametensis* sur gélose MH-F et « Pylo »

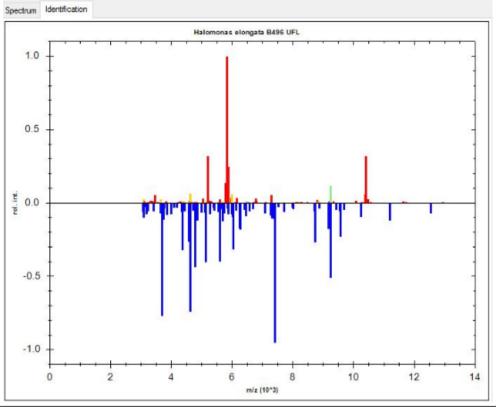
Examen direct-Gram

MALDI-TOF

→ 4 souches sur 17 identifiées (H. cinaedi, H. cholecystus, H. fenneliae, H. nemestrinae) et aucune des souches cliniques

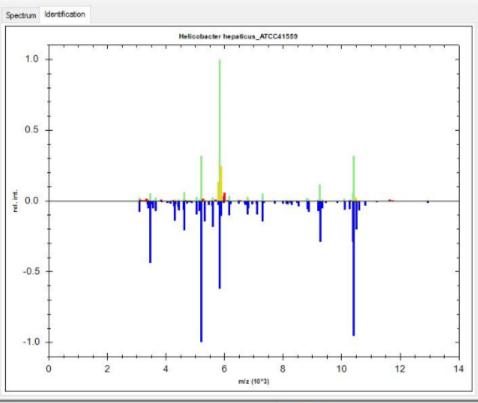
Hypothèses:

- absence de spectre de référence
- nombre trop faible de spectres (exemple : *H. canis*)
- erreur d'espèce



MALDI-TOF: Base de données Bruker

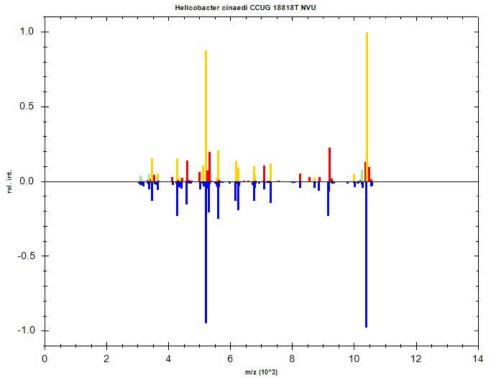
Spectre de *H. hepaticus* 3b1


Spectre du meilleur match obtenu via la base Bruker

	Mb	Detected Species	Log(Score)
	1	Halomonas elongata B496 UFL	1.210
•	1	Amylolactobacillus amylotrophicus DSM 20534T DSM	1.180
•	ii.	Aromatoleum diolicum 22Lin MPB	1.170
•		Streptococcus oralis NRZ 36247 NRZ	1.160
•	1	Novosphingobium subterraneum DSM 12447T HAM	1.150
•	ii.	Lactobacillus crispatus DSM 20584T DSM	1.150
•		Bacillus benzoevorans DSM 5392 DSM	1.150
•	1	Staphylococcus felis V860 MCRF	1.140
•		Erysipelothrix rhusiopathiae DSM 5056 DSM	1.130
•	1	Avibacterium gallinarum DSM 17481T DSM	1.120

MALDI-TOF : Base de données Bruker enrichie

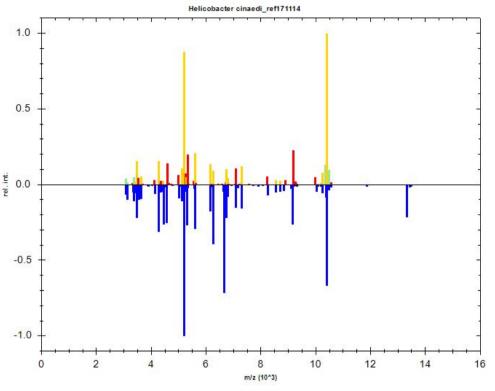
Spectre de *H. hepaticus* 3b1


Spectre du meilleur match obtenu via la base Bruker enrichie

	Mb	Detected Species	Log(Score)
0	i	Helicobacter hepaticus ATCC41559	2.480
•	i i	Halomonas elongata B496 UFL	1.210
•	i.	Amylolactobacillus amylotrophicus DSM 20534T DSM	1.180
9	î	Aromatoleum diolicum 22Lin MPB	1.170
9	i.	Streptococcus oralis NRZ 36247 NRZ	1.160
•	i	Novosphingobium subterraneum DSM 12447T HAM	1.150
•	i	Lactobacillus crispatus DSM 20584T DSM	1.150
9	i.	Bacillus benzoevorans DSM 5392 DSM	1.150
9	i	Staphylococcus felis V860 MCRF	1.140
9	i	Erysipelothrix rhusiopathiae DSM 5056 DSM	1.130

MALDI-TOF : Base de données Bruker

Spectre Patient D


Spectre du meilleur match obtenu via la base Bruker

	Mix	Detected Species	Log(Score)
	1	Helicobacter cinaedi CCUG 18818T NVU	1.670
9		Helicobacter cinaedi DSM 5359T DSM	1.430
9	i	Cellulosimicrobium cellulans B480 UFL	1.330
9	i	Paraburkholderia caribensis DSM 13236T HAM	1.330
•	ı	Pseudomonas syringae ssp syringae LMG 1247T HAM	1.200
9	i	Lacticaseibacillus paracasei ssp paracasei DSM 20207 DSM	1.190
•	ı	Clostridium cochlearium 1050 NCTC 2909 BOG	1.170
9	i i	Neisseria meningitidis CCUG 63283 CCUG	1.170
9	i	Gelidibacter sediminis DSM 28135T DSM	1.160
9	i	Clostridium haemolyticum 1069 ATCC 9650T BOG	1.150

MALDI-TOF : Base de données Bruker enrichie

Spectre Patient D

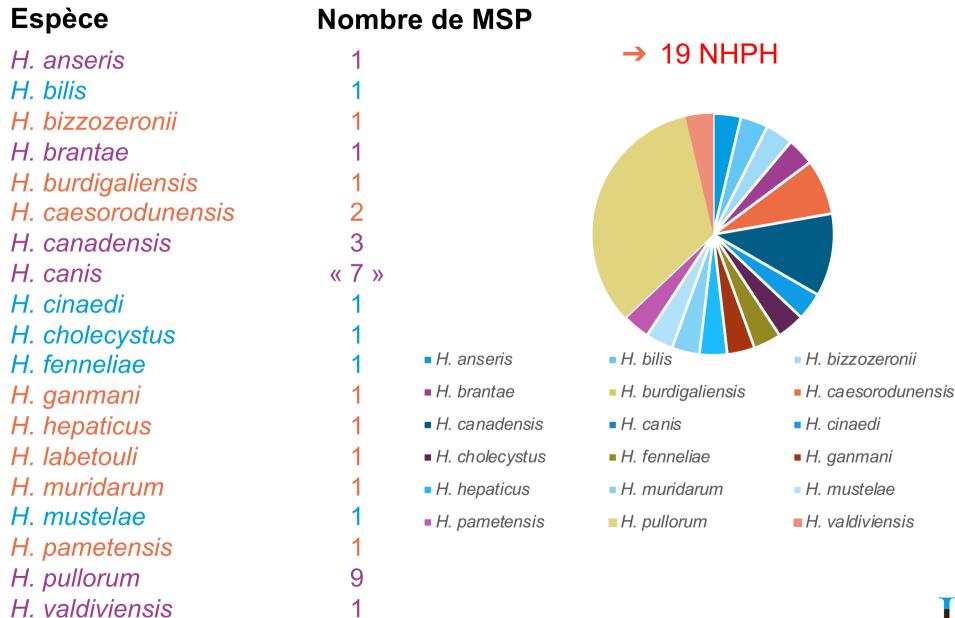
Spectre du meilleur match obtenu via la base Bruker enrichie

	Mix	Detected Species	Log(Score)	
)	1	Helicobacter cinaedi ref171114	1.780	
		Helicobacter fenneliae DSM7491	1.150	
		Helicobacter hepaticus ATCC41559	0.780	
		Helicobacter fenneliae DSM7491	0.720	
		Helicobacter rappimi CCUG 29176	0.710	
		Helicobacter rappini CCUG 23435	0.680	
		H. canadensis NCTC 13242 cnrch	0.610	
		Helicobacter anseris CCUG 52421	0.590	
		Helicobacter pametensis CIP104249	0.540	
		Helicobacter canadensis ref171114	0.510	

Conclusion

Conclusion-1

→ Les tests biochimiques → critères d'orientation


→ Maldi-TOF → permet une identification rapide, mais certaines limites sont perfectibles

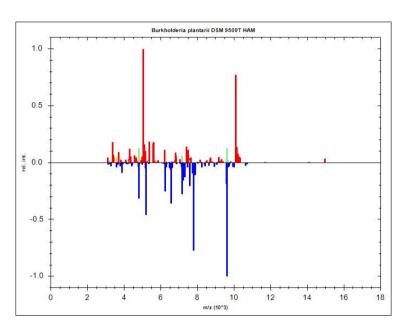
> bases commerciales limitées

Base du CNRCH version 2023-genre Helicobacter (n=20)

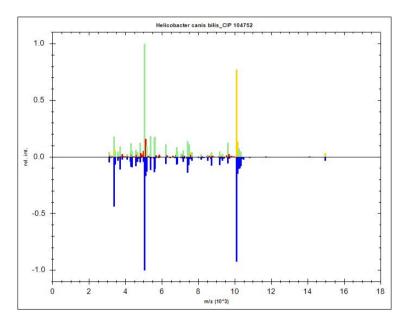
Conclusion-2

- → Envoyer au CNR vos *Helicobacter* non-pylori pour identification
- → MALDI-TOF sur notre base enrichie + NGS si nécessaire
- → Recherche de résistance par génotypage.

Objectifs futurs


→ Possibilité d'envoyer au CNRCH les données brutes du spectre MALDI-TOF Bruker afin de réduire le temps nécessaire à l'identification.

Un cas concret récent, CH de Savoie



Base commerciale

	Mix	Detected Species	Log(Score)
3	1	Burkholderia plantarii DSM 9509T HAM	1.330
•		Burkholderia anthina LMG 16670 HAM	1.330
•		Staphylococcus delphini h 4a JUT	1.290
•		Bifidobacterium longum ssp infantis DSM 20090 DSM 2	1.280
•		Clostridium polynesiense DSM 27072T DSM	1.260
		Brevundimonas diminuta DSM 7234T HAM	1.240
•		Pseudomonas putida Mu15117 1 CHB	1.230
•		Arcanobacterium phocae UGV 2883 UGV	1.230
•		Burkholderia vietnamiensis LMG 10929T HAM	1.210
•		Pseudomonas putida DSM 291T HAM	1.190

Base enrichie (2023)

	Mix	Detected Species	Log(Score)	
0	1	Helicobacter canis	2.430	
0		Helicobacter canis CHIGOT	2.320	
0		Helicobacter canis 104753T	2.170	
•		Helicobacter canis FRANCO	0.830	
•		Helicobacter anseris CCUG 52421	0.690	
•		Helicobacter canadensis ref171114	0.690	
•		Helicobacter valdiviensis CECT 8410	0.620	
•		H. canadensis NCTC 13242 cnrch	0.580	
	8	H. canadensis	0.500	
•		H. canadensis CCUG 47163 bis	0.490	

Merci pour votre attention

