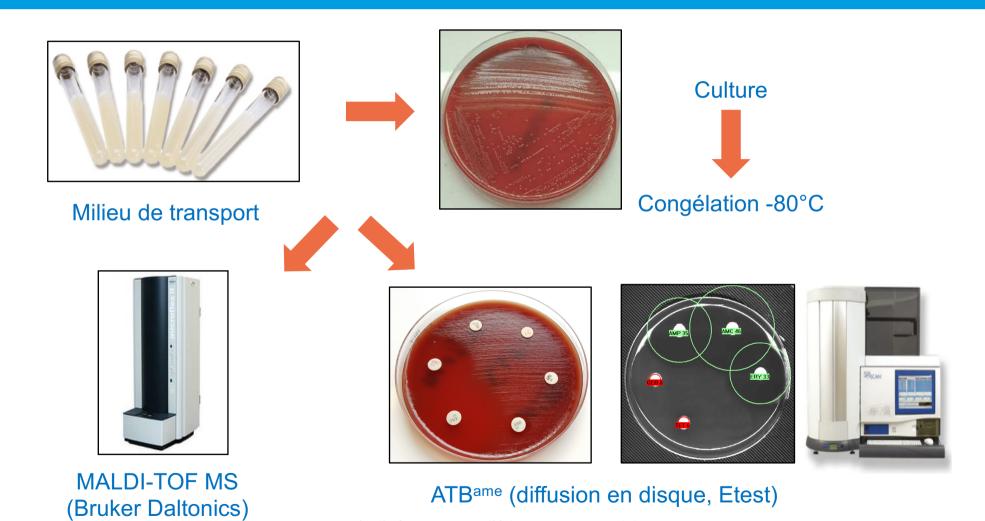
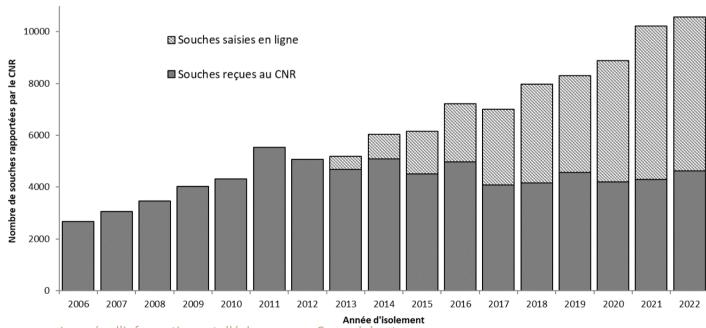
Centre National de Référence des Campylobacters et Hélicobacters
CHU de Bordeaux

Un « pipeline » bioinformatique d'analyse de génomes de Campylobacters : vers une version 2.0 des antibiogrammes du CNRCH.

Quentin Jehanne et Philippe Lehours



Analyses de routine sur les Campylobacters au CNRCH

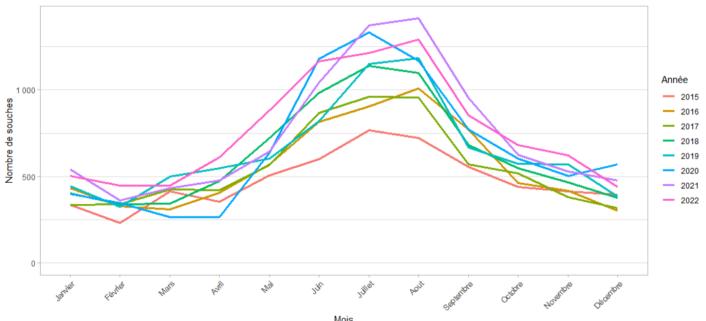

Le réseau de surveillance Campylobacter du CNRCH

→ Réseau Campylobacter

hospitaliers (60): CAMPY.HOP

privés (68) : CAMPY.COM

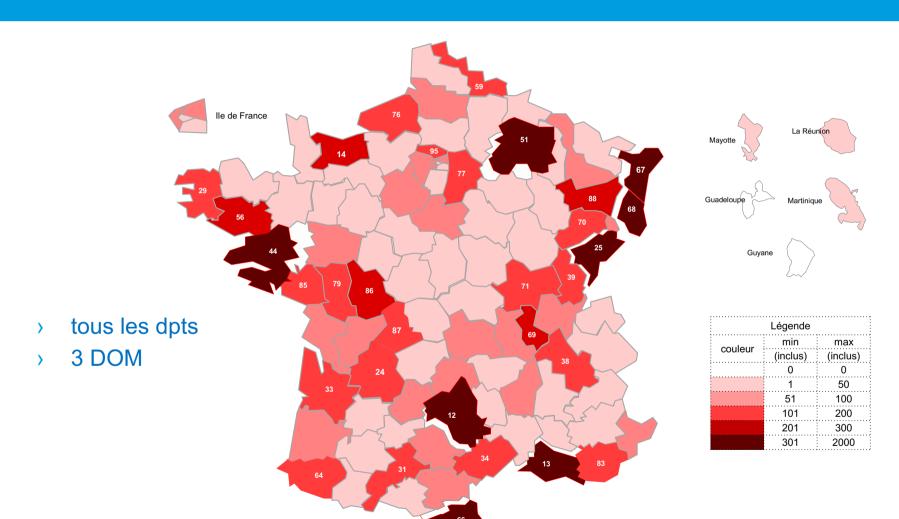
en 2022 : 10498 souches


Le réseau de surveillance Campylobacter du CNRCH

→ Réseau Campylobacter

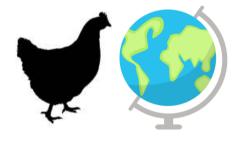
hospitaliers (60): CAMPY.HOP

> privés (68) : CAMPY.COM


en 2022 : 10498 souches

Couverture du réseau du CNR en 2022

2023


Limites rencontrées

Espèce non identifiée par MALDI-TOF?

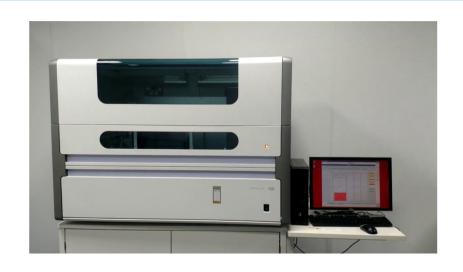
Mécanismes de résistance?

Provenance des souches (sources?)

Objectif

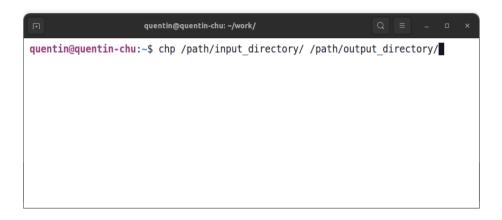
→ Développement d'un pipeline d'analyse en routine des génomes de Campylobacter sp

Quentin Jehanne, ingénieur au CNRCH, PhD



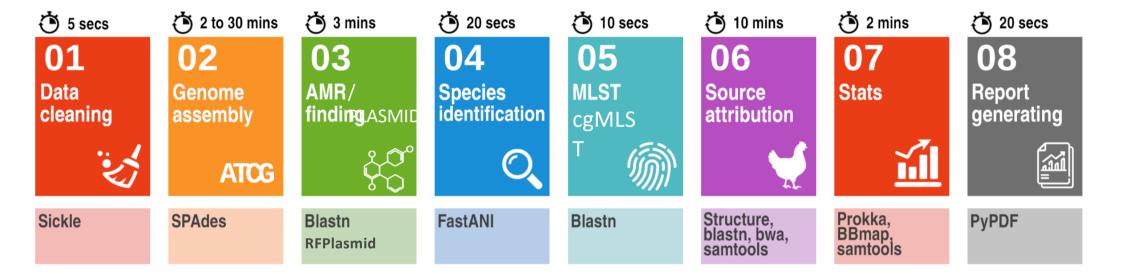
2023 / Journée d'informations et d'échanges sur Campylobacter

Extraction d'ADN et séquençage « next-generation »

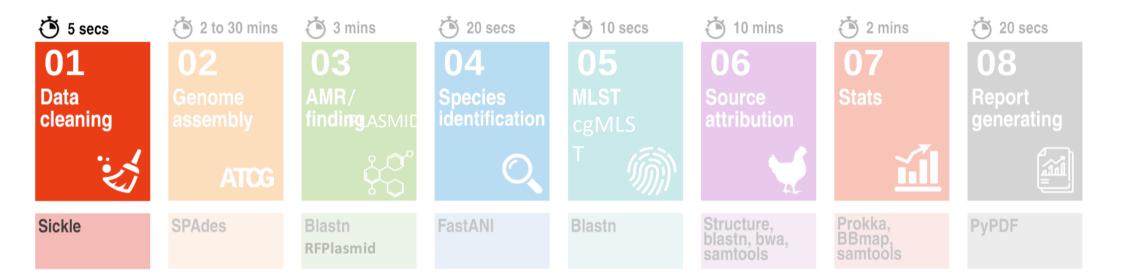

→ Utilisation du système MagNA Pure pour l'extraction

- → Utilisation de l'Iseq100 d'Illumina pour le séquençage.
 - profondeur moyenne de séquençage de 20
 - couverture du génome supérieure à 95%
 - achat et installation en juin 2021 au CNRCH
- → Externalisation des séquençages

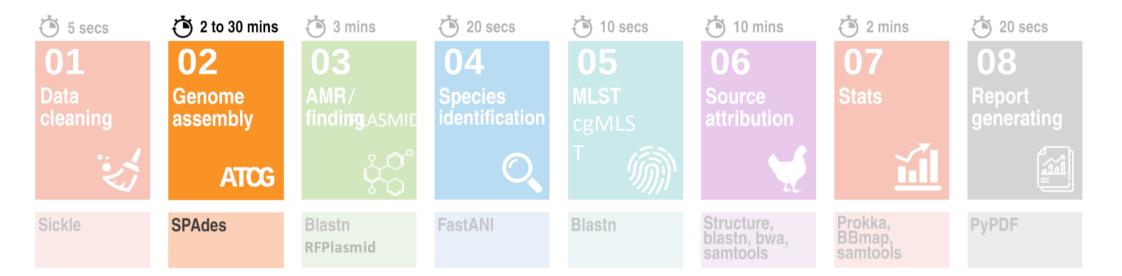
- Développée avec le langage Python
- Utilisable sous le système d'exploitation Linux.

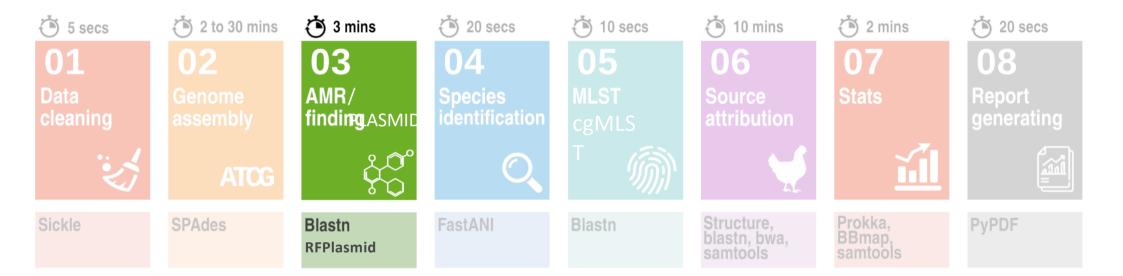


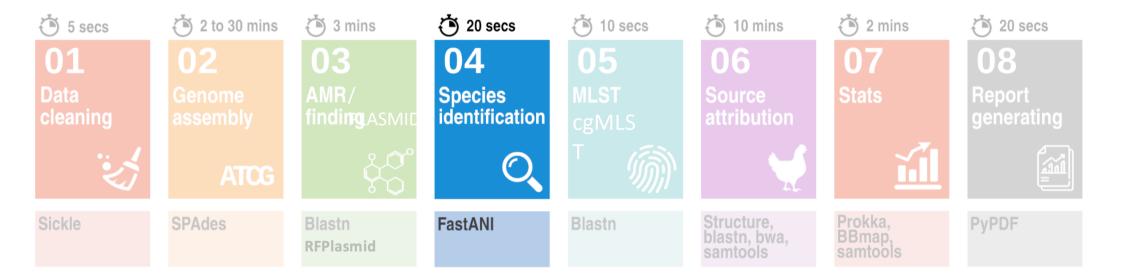

```
quentin@quentin-chu: ~/work/

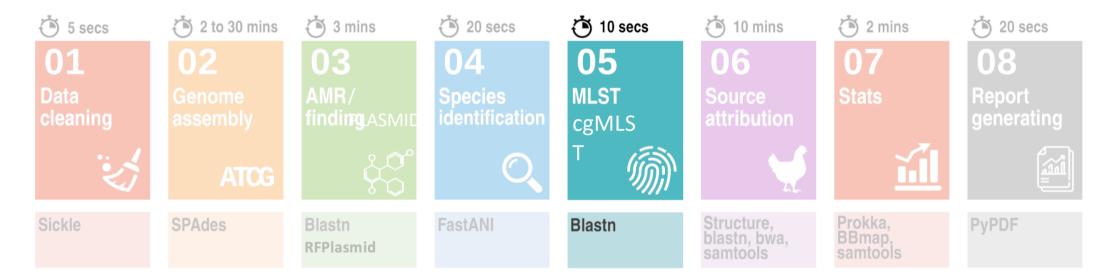

[SOLATE [1/24] 10

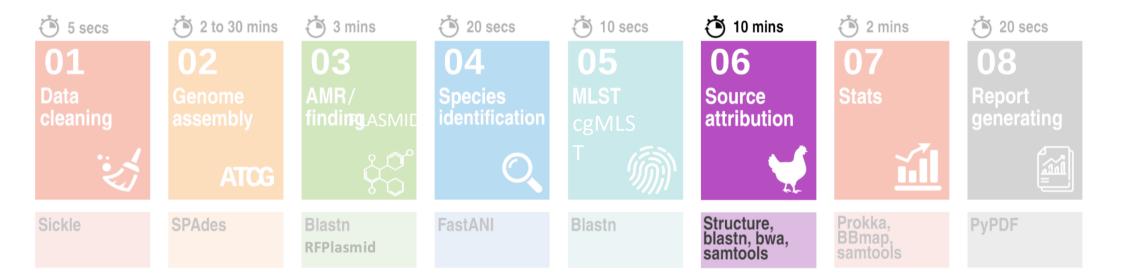
04/07/23 15:02:37 Step 1 Data cleaning ...
```

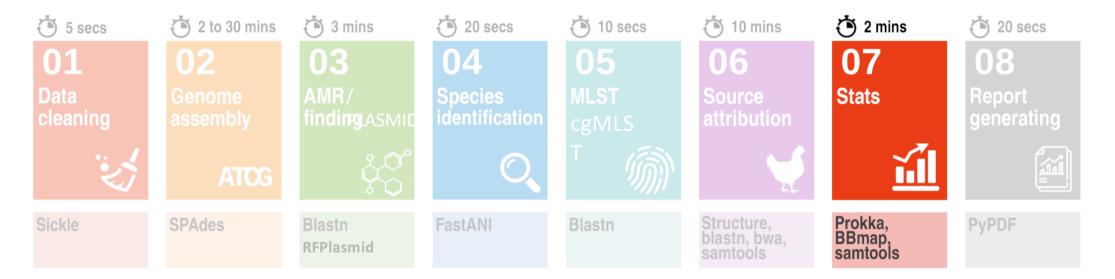

→ Suppression des séquences de mauvaise qualité.


→ Génération du génome de la souche par assemblage.


→ Les mécanismes de résistance et les plasmides sont déterminés à partir de plusieurs bases de données (CNRCH, NCBI, CARD, ResFinder, PlasmidFinder ...).

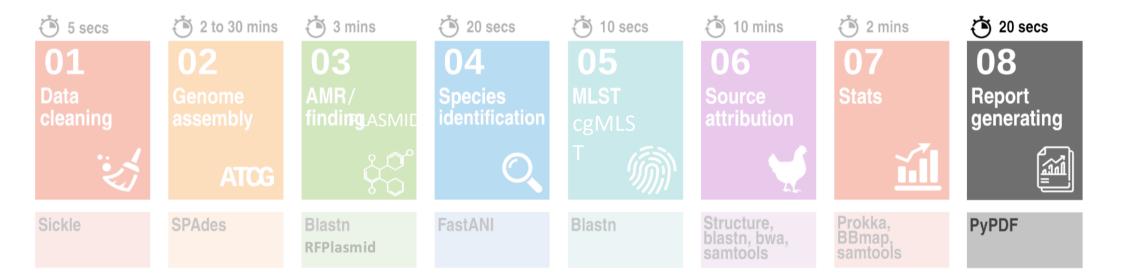

→ L'espèce est identifiée en comparant le génome à 129 références de Campylobacter, Helicobacter et Aliarcobacter.

- → Typage moléculaire de la souche par la méthode MLST (Dingle et al. 2001).
- → Utilisation de la base de données PubMLST pour la MLST et le cgMLST.

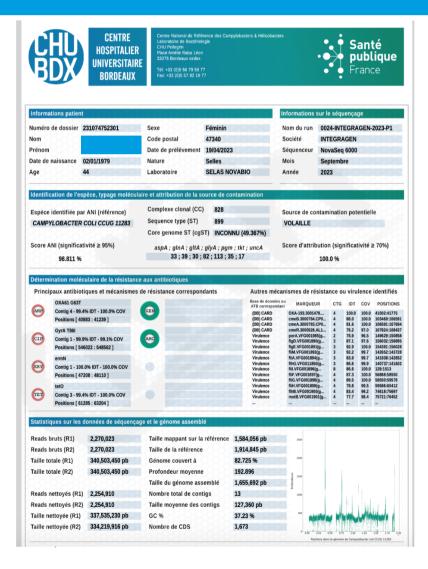


→ La source potentielle de contamination est estimée à partir des données publiées par le CNRCH, en collaboration avec l'Université de Bath.

Thépault et al. 2017 (C. jejuni) Jehanne et al. 2020 (C. coli)



Détermination de la taille du génome, du nombre de CDS, du GC% et de la couverture.



→ Les résultats sont condensés dans un document .pdf.

Rapport en .pdf contenant les informations essentielles

Données patient, laboratoire et run de séquençage

Informations patient				Informations sur le séquençage		
Numéro de dossier	231074752301	Sexe	Féminin	Nom du run	0024-INTEGRAGEN-2023-P1	
Nom	. 1	Code postal	47340	Société	INTEGRAGEN	
Prénom		Date de prélèvement	19/04/2023	Séquenceur	NovaSeq 6000	
Date de naissance	02/01/1979	Nature	Selles	Mois	Septembre	
Age	44	Laboratoire	SELAS NOVABIO	Année	2023	

Identification, MLST et attribution de source

Identification de l'espèce, typage molécul	aire et attribution de la sour	ce de contamination	
Espèce identifiée par ANI (référence)	Complexe clonal (CC)	828	Source de contamination potentielle
CAMPYLOBACTER COLI CCUG 11283	Sequence type (ST)	899	VOLAILLE
	Core genome ST (cgST)	INCONNU (49.367%)	
Score ANI (significativité ≥ 95%)	aspA; glnA; gltA; glyA; pgm; tkt; uncA		Score d'attribution (significativité ≥ 70%)
98.811 %	33 ; 39 ; 30 ; 82 ; 113 ; 35 ; 17		100.0 %

Principaux marqueurs de résistance et de virulence (1)

rinci	ipaux antibiotiques et mécanismes de résistance correspondants	Autres mécan	ismes de résista	nce o	u viru	lence	identifiés
	OXA61 G63T	Base de données ou ATB correspondant	MARQUEUR	СТС	IDT	cov	POSITIONS
MP	Contig 4 - 99.4% IDT - 100.0% COV GEN	(DB) CARD	OXA-193.3001478	4	100.0	100.0	41002:41775
	Positions [40883 : 41239]	(DB) CARD	cmeB.3000784.CP0	4	88.0	100.0	103469:10659
		(DB) CARD	cmeA.3000783.CP0	4	81.6	100.0	106591:10769
2-(GyrA T86I	(DB) CARD	cmeR.3000526.AL1	4	76.2	97.0	107824:10843
IP	Contig 1 - 99.9% IDT - 99.1% COV AMO	Virulence	porA.VFG001985(g	2	78.9	96.5	149629:15085
		Virulence	flgD.VFG001890(g	3	87.1	97.6	156032:15689
	Positions [546022 : 548562]	Virulence	flgE.VFG001891(g	3	92.9	100.0	154391:15602
		Virulence Virulence	fliM.VFG001893(g fliA.VFG001894(g	3	92.2 83.9	99.7 99.7	142652:14372 141938:14265
	ermN	Virulence	flhG.VFG011850(g	3	86.6	99.9	141936:14265
RY	Contig 1 - 100.0% IDT - 100.0% COV	Virulence	flil.VFG001896(g	8	86.6	100.0	128:1513
	Positions [47208 : 48110]	Virulence	fliF.VFG001897(g	4	87.3	100.0	56868:58550
	1 03110113 [47200 : 40220]	Virulence	fliG.VFG001898(g	4	89.5	100.0	58550:59578
ET	tetO	Virulence	fliH.VFG001899(g	4	78.8	99.5	59586:60412
	Contin 2 00 40/ IDT 100 00/ COV	Virulence	flhB.VFG001900(g	4	83.4	99.2	74618:75697
EI	Contig 3 - 99.4% IDT - 100.0% COV	Virulence	motB.VFG001901(g	4	77.7	98.4	75721:76452
	Positions [61285 : 63204]						

Principaux marqueurs de résistance et de virulence (2)

Identification de l'espèce, typage moléculaire et attribution de la source de contamination

Espèce identifiée par ANI (référence)

CAMPYLOBACTER COLILMG6440

Score ANI (significativité ≥ 95%)

98.68 %

Complexe clonal (CC)

Sequence type (ST)

Core genome ST (cgST) 6016 (57.483%)

aspA; glnA; gltA; glyA; pgm; tkt; uncA 33:39:30:82:104:56:17

828

827

Source de contamination potentielle

VOLAILLE

Base de données ou

ATB correspondant

(DB) CARD

(DB) CARD

Score d'attribution (significativité ≥ 70%)

CTG

IDT

100.0

87.1

COV

100.0

99.9

POSITIONS

103455:106574

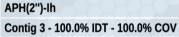
41002:41775

100.0 %

Autres mécanismes de résistance ou virulence identifiés

MARQUEUR

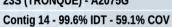
OXA-489.3005724....

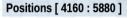

cmeB.3000784.CP0...

Détermination moléculaire de la résistance aux antibiotiques

Principaux antibiotiques et mécanismes de résistance correspondants

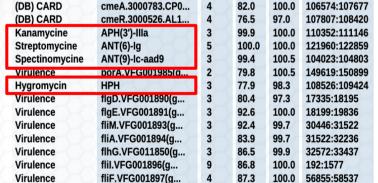
Positions [105873 : 106766]





Contig 1 - 99.9% IDT - 99.1% COV Positions [317810 : 320350]

23S (TRONQUÉ) - A2075G



tet(O-32-O).4_AIOQ01000025 Contig 3 - 99.9% IDT - 100.0% COV

Positions [101060 : 102979]

Mise en place en routine du resistome pour Campylobacter sp

- → Pour toute souche envoyée au CNR avec identification et antibiogramme renseignés
- → Résultat génotypique et non plus phénotypique obtenu sur le pipeline Campylobacter
 - identification de genre et espèce
 - attribution de source
 - classification MLST (ST, CC)
 - marqueurs génotypiques de résistance
 - données de virulence
 - donnés générales sur le génome (taille, GC%, plasmides)

En pratique avant fin 2033

Conclusion

- → 1 run prévu/mois (1000 génomes approx./an)
 - > augmentation du délai de réponse
- → Sur budget du CNR
 - > non facturé
- → EEQ depuis organisé par l'ECDC pour les pipelines bioinformatiques
- → Résultat validé sera disponible sous format mail sécurisé (mmsanté, apycript)

Conclusion

- Cette approche va permettre au CNRCH de :
 - > caractériser et détecter l'émergence de nouveaux mécanismes de résistance
 - investiguer toute discordance phénotype/génotype sera étudiée
 - > confirmer si besoin une identification d'espèce
 - > réaliser le typage de cas groupés (ANI, cgMLST)
 - > continuer de manière automatique le suivi des sources de contamination

Merci pour votre attention!

Directeur: Philippe Lehours

Directrice adjointe : Emilie Bessède

Biologiste: Marine Jauvain

Ingénieurs : Lucie Bruhl-Bénéjat, Quentin Jehanne, Léo Gillet


Techniciennes: Astrid Ducournau, Johanna Aptel, Marie Taymont

Secrétaire : Erick Keisler

CENTRE HOSPITALIER UNIVERSITAIRE BORDEAUX

CNR Campylobacters Helicobacters

@CNR CH

